Appendix: The Proof of Theorem 2

1 Theorem

We review the Theorem 2 in our paper:

Theorem 2. With given B and C, if $\rho > \max\{\rho_1, \rho_2, \rho_3\}$:

\[
\rho_1 = 6N\tau \left(\|B\|_F^4 + \|C\|_F^4 \right) / \left(\|B\|_F^2 + \|C\|_F^2 \right) \\
\rho_2 = 2 \|E\|_F^2 = \frac{6}{\rho_2} \left(16N + N\tau \left(\|B\|_F^2 + \|C\|_F^2 \right) \right)^2 \\
\rho_3 = \|B\|_F^2 + \|C\|_F^2 + \|\mathcal{R}_p(E) + \mathcal{R}_q(E)\|_F^2
\]

We can claim that:

- The equality constraint on the auxiliary matrix is satisfied in the limit, i.e., $\lim_{t \to \infty} \|H(t) - V(t)\|_F^2 = 0$.
- The sequence $\{H(t), V(t), \Lambda(t)\}$ generated by the NS-Alternating algorithm is bounded, and any limit point of the sequence is a KKT point of problem (6) of our paper.

2 Proof

We first give the lemmas of our theorem and then present the derivation of these lemmas. According to the study [Hong et al., 2016], to give Theorem 2, we need to ensure that:

1. The size of the successive difference of the multipliers is bounded by that of the successive difference of the primal variables. (2) The augmented Lagrangian is decreasing and lower bounded.

Lemma 1. We have a bounded successive difference of the multipliers, that is:

\[
\|\Lambda^{(t+1)} - \Lambda^{(t)}\|_F^2 \leq 3c_1 \cdot \|H^{(t+1)} - H^{(t)}\|_F^2 \\
+ 3c_2 \cdot \|V^{(t+1)} - V^{(t)}\|_F^2 \\
+ 3c_3 \cdot \|H^{(t+1)}(V^{(t+1)} - V^{(t)})\|_F^2
\]

where c_1, c_2, and c_3 are positive scalars:

\[
c_1 = \left(16N + \tau N \left(\|B\|_F^2 + \|C\|_F^2 \right) \right)^2
\]

\[
c_2 = \|B\|_F^2 \cdot \|H^{(t)}(V^{(t)}B)^T - M\|_F^2 \\
+ \|C\|_F^2 \cdot \|H^{(t)}(V^{(t)}C)^T - S\|_F^2
\]

\[
c_3 = N\tau \cdot \left(\|B\|_F^2 + \|C\|_F^2 \right)
\]

Lemma 2. If the equations below are satisfied,

\[
\rho > \max\{\rho_1, \rho_2\}
\]

\[
\rho_1 = 6N\tau \left(\|B\|_F^4 + \|C\|_F^4 \right) / \left(\|B\|_F^2 + \|C\|_F^2 \right) \\
\rho_2 = 2 \|E\|_F^2 + \frac{6}{\rho_2} \left(16N + N\tau \left(\|B\|_F^2 + \|C\|_F^2 \right) \right)^2 \\
\rho_3 = \|B\|_F^2 + \|C\|_F^2 + \|\mathcal{R}_p(E) + \mathcal{R}_q(E)\|_F^2
\]

we have positive scalars c_1, c_2, and c_3 so that:

\[
\mathcal{L}(H^{(t+1)}, V^{(t+1)}, \Lambda^{(t+1)}) - \mathcal{L}(X^{(t)}, V^{(t)}, \Lambda^{(t)}) \\
< -c_1 \|H^{(t+1)}(V^{(t+1)} - V^{(t)})\|_F^2 \\
- c_2 \|H^{(t+1)} - H^{(t)}\|_F^2 \\
- c_3 \|V^{(t+1)} - V^{(t)}\|_F^2 \\
- \rho \|V^{(t)} - V^{(t+1)}\|_F^2 \\
- \rho \|H^{(t)} - H^{(t+1)}\|_F^2 \\
+ \rho \|C\|_F^2 \cdot \|H^{(t)}(V^{(t)}C)^T - S\|_F^2
\]

Lemma 3. If the equation below is satisfied,

\[
\rho \geq \|B\|_F^2 + \|C\|_F^2 + 2 \|\mathcal{R}_p(E) + \mathcal{R}_q(E)\|_F^2
\]

we have lower bound of 0, that is,

\[
\mathcal{L}(H^{(t+1)}, V^{(t+1)}, \Lambda^{(t+1)}) \geq 0
\]

Note that, we use X_t instead of \tilde{X}_t to denote the block diagonal matrix in this material. For the ease of derivation, we introduce elementary matrices, E_1 and E_2, to characterize the rotating operator \mathcal{R}_p and \mathcal{R}_q, respectively.

Derivation of Lemma 1:

We first give the optimal condition of Λ as follows:

\[
\left(H(BV^{(t+1)} - M) \right) \cdot V^{(t+1)}B^T \\
+ \left(HCV^{(t+1)}T - S \right) \cdot V^{(t+1)}C^T \\
+ \rho \left(H - V^{(t+1)} - \Lambda^{(t)} \right)/\rho \left(H - V^{(t+1)} - \Lambda^{(t)} \right)
\]

Together with the updating rule of Λ, we obtain:

\[
\Lambda^{(t+1)} = \left(H^{(t+1)BV^{(t+1)}T - M} \right) \cdot V^{(t+1)}B^T \\
+ \left(H^{(t+1)CV^{(t+1)}T - S} \right) \cdot V^{(t+1)}C^T \\
+ \left(H^{(t+1)} - V^{(t+1)} + \Lambda^{(t+1)} \right)
\]
Then, the successive difference of λ is given below:

$$
\Lambda^{(t+1)} - \Lambda^{(t)} =
\begin{align*}
&= \left(H^{(t+1)} BV^{(t+1)^T} - M \right) \cdot V^{(t+1)} B^T \\
&\quad + \left(H^{(t+1)} CV^{(t+1)^T} - S \right) \cdot V^{(t+1)} C^T \\
&\quad + 2 \left(E^T_1 E_1 - E^T_2 E_2 - E^T_2 E_1 + E^T_1 E_2 \right) \left(H^{(t+1)} - H^{(t)} \right) \\
&\quad + \left(H^{(t)} BV^{(t)^T} - M \right) \cdot V^{(t)} B^T \\
&\quad + \left(H^{(t)} CV^{(t)^T} - S \right) \cdot V^{(t)} C^T \\
&\quad + H^{(t+1)} BV^{(t+1)^T} V^{(t+1)} B^T - H^{(t)} BV^{(t)^T} V^{(t)} B^T \\
&\quad + H^{(t+1)} CV^{(t+1)^T} V^{(t+1)} C^T - H^{(t)} CV^{(t)^T} V^{(t)} C^T \\
&\quad - M \left(V^{(t+1)} B^T - V^{(t)} B^T \right) - S \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \\
&\quad + 2 \left(E^T_1 E_1 - E^T_2 E_2 - E^T_2 E_1 + E^T_1 E_2 \right) \left(H^{(t+1)} - H^{(t)} \right) \\
&\quad = \left(H^{(t+1)} - H^{(t)} \right) \left(V^{(t+1)} B^T \right)^T \left(V^{(t+1)} B^T \right) \\
&\quad + H^{(t)} \left[\left(V^{(t+1)} B^T \right)^T \left(V^{(t+1)} B^T \right) \right] \\
&\quad + \left(H^{(t+1)} - H^{(t)} \right) \left(V^{(t+1)} C^T \right)^T \left(V^{(t+1)} C^T \right) \\
&\quad + M \left(V^{(t+1)} B^T - V^{(t)} B^T \right) - S \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \\
&\quad + 2 \left(E^T_1 E_1 - E^T_2 E_2 - E^T_2 E_1 + E^T_1 E_2 \right) \left(H^{(t+1)} - H^{(t)} \right) \\
&\quad = \left(H^{(t)} \left(V^{(t+1)} B^T \right)^T \right. \\
&\quad \left. - M \left(V^{(t+1)} B^T - V^{(t)} B^T \right) \\
&\quad - \left(H^{(t)} \left(V^{(t+1)} C^T \right)^T \right. \\
&\quad \left. - S \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \\
&\quad + M \left(V^{(t+1)} B^T - V^{(t)} B^T \right) - S \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \\
&\quad + 2 \left(E^T_1 E_1 - E^T_2 E_2 - E^T_2 E_1 + E^T_1 E_2 \right) \left(H^{(t+1)} - H^{(t)} \right) \\
&\quad + H^{(t)} \left(V^{(t+1)} B^T - V^{(t)} B^T \right)^T \left(V^{(t+1)} B^T \right) \\
&\quad + H^{(t)} \left(V^{(t+1)} C^T - V^{(t)} C^T \right)^T \left(V^{(t+1)} C^T \right)
\end{align*}
$$

Using triangle inequality, we obtain:

$$
\| |A^{(t+1)} - A^{(t)}| \|_F \\
\leq \| H^{(t+1)} - H^{(t)} \|_F \| \left((V^{(t+1)} B^T)^T \left(V^{(t+1)} B^T \right) \right) \\
+ 2 \left(E^T_1 E_1 - E^T_2 E_2 - E^T_2 E_1 + E^T_1 E_2 \right) \left(H^{(t+1)} - H^{(t)} \right) \|_F \\
+ \| H^{(t)} \left(V^{(t)} C^T \right)^T \left(V^{(t+1)} B^T \right) \|_F \\
+ \| \left(V^{(t+1)} B^T - V^{(t)} B^T \right) \|_F \| H^{(t)} \left(V^{(t+1)} B^T - V^{(t)} B^T \right) \|_F \\
+ \| \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \|_F \| H^{(t)} \left(V^{(t+1)} C^T - V^{(t)} C^T \right) \|_F \\
+ \| H^{(t)} \left(V^{(t+1)} B^T - V^{(t)} B^T \right)^T \|_F \| H^{(t+1)} B^T \|_F \\
+ \| H^{(t)} \left(V^{(t+1)} C^T - V^{(t)} C^T \right)^T \|_F \| H^{(t+1)} C^T \|_F
$$

Given $\| V \|_F \leq \sqrt{N_T}$, finally, we obtain:

$$
\| |A^{(t+1)} - A^{(t)}| \|_F \\
\leq 3 \left(16N + \tau N \left| \left((B_D)^2 + (C_D)^2 \right) \right| \right) \left(H^{(t+1)} - H^{(t)} \right) \|_F \\
+ 3 \left((B_D)^2 \| H^{(t)} \left(V^{(t)} B^T \right) \|_F^2 - M \|_F^2 \\
+ 3 \left((C_D)^2 \| H^{(t)} \left(V^{(t)} C^T \right) \|_F^2 - S \|_F^2 \\
+ 3N_T \left((B_D)^2 + (C_D)^2 \right) \left(H^{(t+1)} - H^{(t)} \right) \|_F^2 \\
+ 3N_T \left((B_D)^2 + (C_D)^2 \right) \left(H^{(t+1)} - H^{(t)} \right) \|_F^2 \\
+ \left(V^{(t+1)} - V^{(t)} \right) \|_F^2
$$

Derivation of Lemma 2:

First, we let

$$
\begin{align*}
A &\triangleq \mathcal{L} \left(H^{(t)}, V^{(t+1)}, A^{(t)} \right) - \mathcal{L} \left(H^{(t)}, V^{(t)}, A^{(t)} \right) \\
B &\triangleq \mathcal{L} \left(H^{(t+1)}, V^{(t+1)}, A^{(t)} \right) - \mathcal{L} \left(H^{(t)}, V^{(t+1)}, A^{(t)} \right) \\
C &\triangleq \mathcal{L} \left(H^{(t+1)}, V^{(t+1)}, A^{(t+1)} \right) - \mathcal{L} \left(H^{(t+1)}, V^{(t+1)}, A^{(t)} \right) \\
\end{align*}
$$

where

$$
\begin{align*}
\mathcal{L} \left(H^{(t)}, V^{(t)}, A^{(t)} \right) &\triangleq \frac{1}{2} \left(H^{(t)} BV^T - M \right) \|_F^2 + \frac{1}{2} \left(H^{(t)} CV^T - S \right) \|_F^2 \\
+ \frac{\rho}{2} \| \left(H^{(t)} - V + A^{(t)} / \rho \right) \|_F^2 + \| E_1 H - E_2 H \|_F^2 \\
+ \frac{\beta^{(t)}}{2} \| V - \lambda^{(t)} \|_F^2
\end{align*}
$$
Then, we have

\[\mathcal{L} \left(\mathbf{H}^{(t+1)}, \mathbf{V}^{(t+1)}, \mathbf{A}^{(t+1)} \right) - \mathcal{L} \left(\mathbf{H}^{(t)}, \mathbf{V}^{(t+1)}, \mathbf{A}^{(t)} \right) = A + B + C \leq A + B + C \quad (9) \]

Specifically,

\[\hat{A} = \frac{1}{2} \| \mathbf{H}^{(t)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 \\
+ \frac{1}{2} \| \mathbf{H}^{(t)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 \\
+ \frac{\rho}{2} \| \mathbf{H}^{(t)} - \mathbf{V}^{(t+1)} + \frac{\Lambda^{(t)}}{\rho} \|_F^2 - \frac{\rho}{2} \| \mathbf{H}^{(t)} - \mathbf{V}^{(t)} + \frac{\Lambda^{(t)}}{\rho} \|_F^2 \\
+ \frac{\beta^{(t)}}{2} \| \mathbf{V} - \mathbf{V}^{(t)} \|_F^2 \\
\leq \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 + \frac{\beta^{(t)}}{2} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 \\
\leq -\frac{1}{2} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 \quad (10) \]

where (a) is the Taylor expansion and (b) is optimal condition.

Similarly,

\[B = \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 \\
+ \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 \\
+ \frac{\rho}{2} \| \mathbf{H}^{(t)} - \mathbf{V}^{(t+1)} + \frac{\Lambda^{(t)}}{\rho} \|_F^2 - \frac{\rho}{2} \| \mathbf{H}^{(t)} - \mathbf{V}^{(t)} + \frac{\Lambda^{(t)}}{\rho} \|_F^2 \\
\leq -\frac{1}{2} \| \mathbf{B} \mathbf{F} + \| \mathbf{C} \|_F^2 \| \mathbf{H}^{(t)} - \mathbf{V}^{(t)} \|_F^2 \\
\leq -\frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 + \frac{\beta^{(t)}}{2} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 \quad (11) \]

and

\[C = \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 - \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 \\
\leq \frac{1}{\rho} \| \mathbf{V}^{(t+1)} - \mathbf{V}^{(t)} \|_F^2 \quad (12) \]

Then, we need to incorporate the result of Lemma 1 into C.

Finally,

\[\mathcal{L} \left(\mathbf{H}^{(t+1)}, \mathbf{V}^{(t+1)}, \mathbf{A}^{(t+1)} \right) - \mathcal{L} \left(\mathbf{H}^{(t)}, \mathbf{V}^{(t)}, \mathbf{A}^{(t)} \right) \]

\[\leq \hat{A} + B + C \]

\[\leq -\frac{1}{2} \| \mathbf{B} \mathbf{F} + \| \mathbf{C} \|_F^2 \| \mathbf{H}^{(t)} - \mathbf{V}^{(t)} \|_F^2 \quad (13) \]

where

\[c_1 = \frac{\rho}{2} + \| \mathbf{E}_1 - \mathbf{E}_2 \|_F^2 - \frac{3}{\rho} (16N + N\tau \| \mathbf{B} \mathbf{F} + \| \mathbf{C} \|_F^2)^2 \]

\[c_2 = \frac{\rho}{2} + \| \mathbf{E}_1 - \mathbf{E}_2 \|_F^2 - \frac{3}{\rho} \| \mathbf{H}^{(t)} - \mathbf{V}^{(t)} \|_F^2 \quad (14) \]

Let \(c_i > 0 \), \(i = \{1, 2, 3, 4\} \), we have Lemma 2.

Derivation of Lemma 3:

\[\mathcal{L} \left(\mathbf{H}^{(t+1)}, \mathbf{V}^{(t+1)}, \mathbf{A}^{(t+1)} \right) \]

\[= \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \| \mathbf{E}_1 \mathbf{H}^{(t+1)} - \mathbf{E}_2 \mathbf{H}^{(t+1)} \|_F^2 + \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 \quad (15) \]

\[= \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \| \mathbf{E}_1 \mathbf{H}^{(t+1)} - \mathbf{E}_2 \mathbf{H}^{(t+1)} \|_F^2 + \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 \quad (15) \]

\[= \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \| \mathbf{E}_1 \mathbf{H}^{(t+1)} - \mathbf{E}_2 \mathbf{H}^{(t+1)} \|_F^2 + \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 \quad (15) \]

\[= \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{B} \mathbf{V}^{(t+1)^T} - \mathbf{M} \|_F^2 + \frac{1}{2} \| \mathbf{H}^{(t+1)} \mathbf{C} \mathbf{V}^{(t+1)^T} - \mathbf{S} \|_F^2 + \| \mathbf{E}_1 \mathbf{H}^{(t+1)} - \mathbf{E}_2 \mathbf{H}^{(t+1)} \|_F^2 + \frac{\rho}{2} \| \mathbf{V}^{(t+1)} - \mathbf{H}^{(t+1)} + \frac{\Lambda^{(t+1)}}{\rho} \|_F^2 \quad (15) \]
First, we note that,
\[
0 \leq \left\| (H^{(t+1)} - V^{(t+1)}) BV^{(t+1)^T} + (H^{(t+1)}BV^{(t+1)^T} - M) \right\|_F^2
\]
\[
= \left\| (H^{(t+1)} - V^{(t+1)}) BV^{(t+1)^T} \right\|_F^2 + \left\| (H^{(t+1)}BV^{(t+1)^T} - M) \right\|_F^2
\]
\[
+ 2 \left\langle BV^{(t+1)^T} (H^{(t+1)} - V^{(t+1)}) , (H^{(t+1)}BV^{(t+1)^T} - M) \right\rangle
\]
\[
= \left\| (H^{(t+1)} - V^{(t+1)}) BV^{(t+1)^T} \right\|_F^2 + \left\| (H^{(t+1)}BV^{(t+1)^T} - M) \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (H^{(t+1)}BV^{(t+1)^T} - M) V^{(t+1)^T} \right\rangle,
\]
where we have
\[
(Y^T (X - Y), XY - Z) = (X - Y, (XY - Z)Y).
\]
That is,
\[
\left\| (H^{(t+1)}BV^{(t+1)^T} - M) \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (H^{(t+1)}BV^{(t+1)^T} - M) \right\rangle
\]
\[
\leq - \left\| (H^{(t+1)} - V^{(t+1)}) BV^{(t+1)^T} \right\|_F^2
\]
\[
- \left\| B \right\|_F^2 N \tau \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2.
\]
Therefore, we obtain
\[
\frac{1}{2} \left\| (H^{(t+1)}BV^{(t+1)^T} - M) \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (H^{(t+1)}BV^{(t+1)^T} - M) \right\rangle
\]
\[
\leq - \frac{1}{2} \left\| B \right\|_F^2 N \tau \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2.
\]
Second, we similarly derive the inequality as follows:
\[
\frac{1}{2} \left\| (H^{(t+1)}CV^{(t+1)^T} - S) \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (H^{(t+1)}CV^{(t+1)^T} - S) \right\rangle
\]
\[
\leq - \frac{1}{2} \left\| C \right\|_F^2 N \tau \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2.
\]
Third, we first derive equations as follows:
\[
2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (E_1 - E_2)^T (E_1 - E_2) H^{(t+1)} \right\rangle
\]
\[
+ \left\| E_1 H^{(t+1)} - E_2 H^{(t+1)} \right\|_F^2
\]
\[
= 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (E_1 - E_2)^T (E_1 - E_2) H^{(t+1)} \right\rangle
\]
\[
+ \left\| (E_1 - E_2) H^{(t+1)} \right\|_F^2
\]
\[
= 2 \left\langle (H^{(t+1)} - V^{(t+1)}) , (E_1 - E_2)^T (E_1 - E_2) H^{(t+1)} \right\rangle
\]
\[
+ \left\| (E_1 - E_2) H^{(t+1)} \right\|_F^2.
\]
Note that,
\[
0 \leq \left\| (H^{(t+1)} - V^{(t+1)}) (E_1 - E_2) - (E_1 - E_2) H^{(t+1)} \right\|_F^2
\]
\[
= \left\| (H^{(t+1)} - V^{(t+1)}) (E_1 - E_2) \right\|_F^2 + \left\| (E_1 - E_2) H^{(t+1)} \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) (E_1 - E_2) , (E_1 - E_2) H^{(t+1)} \right\rangle.
\]
That is,
\[
\left\| (E_1 - E_2) H^{(t+1)} \right\|_F^2
\]
\[
+ 2 \left\langle (H^{(t+1)} - V^{(t+1)}) (E_1 - E_2) , (E_1 - E_2) H^{(t+1)} \right\rangle
\]
\[
\geq - \left\| (E_1 - E_2) \right\|_F^2 \cdot \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2.
\]
Therefore, we obtain
\[
2 \left\langle (H^{(t+1)} - V^{(t+1)}) (E_1 - E_2) , (E_1 - E_2) H^{(t+1)} \right\rangle
\]
\[
+ \left\| (E_1 - E_2) H^{(t+1)} \right\|_F^2
\]
\[
\geq - \left\| (E_1 - E_2) \right\|_F^2 \cdot \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2.
\]
Finally, we obtain:
\[
\mathcal{L} (H^{(t+1)} , V^{(t+1)} , A^{(t+1)}) = c \cdot \left\| (H^{(t+1)} - V^{(t+1)}) \right\|_F^2
\]
\[
c = \rho - \frac{1}{2} \left\| B \right\|_F^2 N \tau - \frac{1}{2} \left\| C \right\|_F^2 N \tau - \left\| E_1 - E_2 \right\|_F^2
\]
Let $c > 0$, we have Lemma 3.

With Lemma 1-3 and the optimal condition, we can claim that Theorem 2 holds. Q.E.D.

References